Back to Search
Start Over
Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator
- Publication Year :
- 2022
-
Abstract
- An outstanding challenge for color center-based quantum information processing technologies is the integration of optically-coherent emitters into scalable thin-film photonics. Here, we report on the integration of near-transform-limited silicon vacancy (V$_{\text{Si}}$) defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode. We investigate the effect of multimode interference on the photon scattering dynamics from this multi-emitter cavity quantum electrodynamics system. These results are crucial for the development of quantum networks in silicon carbide and bridge the classical-quantum photonics gap by uniting optically-coherent spin defects with wafer-scalable, state-of-the-art photonics.<br />Comment: 8 pages, 5 figures + supplementary information
- Subjects :
- Quantum Physics
Physics - Optics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2202.04845
- Document Type :
- Working Paper