Back to Search
Start Over
Scalable Multi-Party Privacy-Preserving Gradient Tree Boosting over Vertically Partitioned Dataset with Outsourced Computations
- Publication Year :
- 2022
-
Abstract
- Due to privacy concerns, multi-party gradient tree boosting algorithms have become widely popular amongst machine learning researchers and practitioners. However, limited existing works have focused on vertically partitioned datasets, and the few existing works are either not scalable or tend to leak information. Thus, in this work, we propose SSXGB which is a scalable and secure multi-party gradient tree boosting framework for vertically partitioned datasets with partially outsourced computations. Specifically, we employ an additive homomorphic encryption (HE) scheme for security. We design two sub-protocols based on the HE scheme to perform non-linear operations associated with gradient tree boosting algorithms. Next, we propose a secure training and a secure prediction algorithms under the SSXGB framework. Then we provide theoretical security and communication analysis for the proposed framework. Finally, we evaluate the performance of the framework with experiments using two real-world datasets.
- Subjects :
- Computer Science - Cryptography and Security
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2202.03245
- Document Type :
- Working Paper