Back to Search Start Over

Signaling in Posted Price Auctions

Authors :
Castiglioni, Matteo
Romano, Giulia
Marchesi, Alberto
Gatti, Nicola
Publication Year :
2022

Abstract

We study single-item single-unit Bayesian posted price auctions, where buyers arrive sequentially and their valuations for the item being sold depend on a random, unknown state of nature. The seller has complete knowledge of the actual state and can send signals to the buyers so as to disclose information about it. For instance, the state of nature may reflect the condition and/or some particular features of the item, which are known to the seller only. The problem faced by the seller is about how to partially disclose information about the state so as to maximize revenue. Unlike classical signaling problems, in this setting, the seller must also correlate the signals being sent to the buyers with some price proposals for them. This introduces additional challenges compared to standard settings. We consider two cases: the one where the seller can only send signals publicly visible to all buyers, and the case in which the seller can privately send a different signal to each buyer. As a first step, we prove that, in both settings, the problem of maximizing the seller's revenue does not admit an FPTAS unless P=NP, even for basic instances with a single buyer. As a result, in the rest of the paper, we focus on designing PTASs. In order to do so, we first introduce a unifying framework encompassing both public and private signaling, whose core result is a decomposition lemma that allows focusing on a finite set of possible buyers' posteriors. This forms the basis on which our PTASs are developed. In particular, in the public signaling setting, our PTAS employs some ad hoc techniques based on linear programming, while our PTAS for the private setting relies on the ellipsoid method to solve an exponentially-sized LP in polynomial time. In the latter case, we need a custom approximate separation oracle, which we implement with a dynamic programming approach.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2201.12183
Document Type :
Working Paper