Back to Search
Start Over
P-adic Simpson correpondence via prismatic crystals
- Publication Year :
- 2022
-
Abstract
- Let $\frakX$ be a smooth $p$-adic formal scheme over $\calO_K$ with adic generic fiber $X$. We obtain a global equivalence between the category $\Vect((\frakX)_{\Prism},\overline\calO_{\Prism}[\frac{1}{p}])$ of rational Hodge--Tate crystals on the absolute prismatic site $(\frakX)_{\Prism}$ and the category $\HIG^{\nil}_*(X)$ of enhanced Higgs bundles on $X$. Along the way, we construct an inverse Simpson functor from $\HIG^{\nil}_*(X)$ to the category $\Vect(X_{\proet},\widehat\calO_X)$ of generalised representations on $X$, which turns out to be fully faithful.<br />Comment: Final version; to appear in JEMS
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2201.08030
- Document Type :
- Working Paper