Back to Search Start Over

P-adic Simpson correpondence via prismatic crystals

Authors :
Min, Yu
Wang, Yupeng
Publication Year :
2022

Abstract

Let $\frakX$ be a smooth $p$-adic formal scheme over $\calO_K$ with adic generic fiber $X$. We obtain a global equivalence between the category $\Vect((\frakX)_{\Prism},\overline\calO_{\Prism}[\frac{1}{p}])$ of rational Hodge--Tate crystals on the absolute prismatic site $(\frakX)_{\Prism}$ and the category $\HIG^{\nil}_*(X)$ of enhanced Higgs bundles on $X$. Along the way, we construct an inverse Simpson functor from $\HIG^{\nil}_*(X)$ to the category $\Vect(X_{\proet},\widehat\calO_X)$ of generalised representations on $X$, which turns out to be fully faithful.<br />Comment: Final version; to appear in JEMS

Subjects

Subjects :
Mathematics - Algebraic Geometry

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2201.08030
Document Type :
Working Paper