Back to Search Start Over

This Must Be the Place: Predicting Engagement of Online Communities in a Large-scale Distributed Campaign

Authors :
Israeli, Abraham
Kremiansky, Alexander
Tsur, Oren
Publication Year :
2022

Abstract

Understanding collective decision making at a large-scale, and elucidating how community organization and community dynamics shape collective behavior are at the heart of social science research. In this work we study the behavior of thousands of communities with millions of active members. We define a novel task: predicting which community will undertake an unexpected, large-scale, distributed campaign. To this end, we develop a hybrid model, combining textual cues, community meta-data, and structural properties. We show how this multi-faceted model can accurately predict large-scale collective decision-making in a distributed environment. We demonstrate the applicability of our model through Reddit's r/place - a large-scale online experiment in which millions of users, self-organized in thousands of communities, clashed and collaborated in an effort to realize their agenda. Our hybrid model achieves a high F1 prediction score of 0.826. We find that coarse meta-features are as important for prediction accuracy as fine-grained textual cues, while explicit structural features play a smaller role. Interpreting our model, we provide and support various social insights about the unique characteristics of the communities that participated in the \r/place experiment. Our results and analysis shed light on the complex social dynamics that drive collective behavior, and on the factors that propel user coordination. The scale and the unique conditions of the \rp~experiment suggest that our findings may apply in broader contexts, such as online activism, (countering) the spread of hate speech and reducing political polarization. The broader applicability of the model is demonstrated through an extensive analysis of the WallStreetBets community, their role in r/place and four years later, in the GameStop short squeeze campaign of 2021.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2201.05334
Document Type :
Working Paper