Back to Search
Start Over
GPU-Net: Lightweight U-Net with more diverse features
- Publication Year :
- 2022
-
Abstract
- Image segmentation is an important task in the medical image field and many convolutional neural networks (CNNs) based methods have been proposed, among which U-Net and its variants show promising performance. In this paper, we propose GP-module and GPU-Net based on U-Net, which can learn more diverse features by introducing Ghost module and atrous spatial pyramid pooling (ASPP). Our method achieves better performance with more than 4 times fewer parameters and 2 times fewer FLOPs, which provides a new potential direction for future research. Our plug-and-play module can also be applied to existing segmentation methods to further improve their performance.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2201.02656
- Document Type :
- Working Paper