Back to Search Start Over

GPU-Net: Lightweight U-Net with more diverse features

Authors :
Yu, Heng
Fan, Di
Song, Weihu
Publication Year :
2022

Abstract

Image segmentation is an important task in the medical image field and many convolutional neural networks (CNNs) based methods have been proposed, among which U-Net and its variants show promising performance. In this paper, we propose GP-module and GPU-Net based on U-Net, which can learn more diverse features by introducing Ghost module and atrous spatial pyramid pooling (ASPP). Our method achieves better performance with more than 4 times fewer parameters and 2 times fewer FLOPs, which provides a new potential direction for future research. Our plug-and-play module can also be applied to existing segmentation methods to further improve their performance.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2201.02656
Document Type :
Working Paper