Back to Search
Start Over
Vegetation Stratum Occupancy Prediction from Airborne LiDAR 3D Point Clouds
- Source :
- SilviLaser 2021 Conference
- Publication Year :
- 2021
-
Abstract
- We propose a new deep learning-based method for estimating the occupancy of vegetation strata from 3D point clouds captured from an aerial platform. Our model predicts rasterized occupancy maps for three vegetation strata: lower, medium, and higher strata. Our training scheme allows our network to only being supervized with values aggregated over cylindrical plots, which are easier to produce than pixel-wise or point-wise annotations. Our method outperforms handcrafted and deep learning baselines in terms of precision while simultaneously providing visual and interpretable predictions. We provide an open-source implementation of our method along along a dataset of 199 agricultural plots to train and evaluate occupancy regression algorithms.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Journal :
- SilviLaser 2021 Conference
- Publication Type :
- Report
- Accession number :
- edsarx.2112.13583
- Document Type :
- Working Paper