Back to Search Start Over

Curious cyclic sieving on increasing tableaux

Authors :
Gaetz, Christian
Pechenik, Oliver
Striker, Jessica
Swanson, Joshua P.
Source :
Enumerative Combinatorics & Applications 2(3), Article #S2R18, 2022, 8 pages
Publication Year :
2021

Abstract

We prove a cyclic sieving result for the set of $3 \times k$ packed increasing tableaux with maximum entry $m :=3+k$ under K-promotion. The "curiosity" is that the sieving polynomial arises from the $q$-hook formula for standard tableaux of "toothbrush shape" $(2^3, 1^{k-2})$ with $m+1$ boxes, whereas K-promotion here only has order $m$.<br />Comment: 9 pages, 4 figures

Details

Database :
arXiv
Journal :
Enumerative Combinatorics & Applications 2(3), Article #S2R18, 2022, 8 pages
Publication Type :
Report
Accession number :
edsarx.2112.09228
Document Type :
Working Paper
Full Text :
https://doi.org/10.54550/ECA2022V2S3R18