Back to Search
Start Over
Curious cyclic sieving on increasing tableaux
- Source :
- Enumerative Combinatorics & Applications 2(3), Article #S2R18, 2022, 8 pages
- Publication Year :
- 2021
-
Abstract
- We prove a cyclic sieving result for the set of $3 \times k$ packed increasing tableaux with maximum entry $m :=3+k$ under K-promotion. The "curiosity" is that the sieving polynomial arises from the $q$-hook formula for standard tableaux of "toothbrush shape" $(2^3, 1^{k-2})$ with $m+1$ boxes, whereas K-promotion here only has order $m$.<br />Comment: 9 pages, 4 figures
- Subjects :
- Mathematics - Combinatorics
05E18, 05A15
Subjects
Details
- Database :
- arXiv
- Journal :
- Enumerative Combinatorics & Applications 2(3), Article #S2R18, 2022, 8 pages
- Publication Type :
- Report
- Accession number :
- edsarx.2112.09228
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.54550/ECA2022V2S3R18