Back to Search
Start Over
A PTAS for the Min-Max Euclidean Multiple TSP
- Publication Year :
- 2021
-
Abstract
- We present a polynomial-time approximation scheme (PTAS) for the min-max multiple TSP problem in Euclidean space, where multiple traveling salesmen are tasked with visiting a set of $n$ points and the objective is to minimize the maximum tour length. For an arbitrary $\varepsilon > 0$, our PTAS achieves a $(1 + \varepsilon)$-approximation in time $O \big(n ((1/\varepsilon) \log (n/\varepsilon))^{O(1/\varepsilon)} \big)$. Our approach extends Sanjeev Arora's dynamic-programming (DP) PTAS for the Euclidean TSP (https://doi.org/10.1145/290179.290180). Our algorithm introduces a rounding process to balance the allocation of path lengths among the multiple salesman. We analyze the accumulation of error in the DP to prove that the solution is a $(1 + \varepsilon)$-approximation.<br />Comment: 12 pages, 5 figures
- Subjects :
- Computer Science - Data Structures and Algorithms
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2112.04325
- Document Type :
- Working Paper