Back to Search Start Over

The $\mathrm{A}_2$ Andrews-Gordon identities and cylindric partitions

Authors :
Warnaar, S. Ole
Source :
Trans. Amer. Math. Soc. Ser. B 10 (2023) 715-765
Publication Year :
2021

Abstract

Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers-Ramanujan-type identities, we obtain the $\mathrm{A}_2$ (or $\mathrm{A}_2^{(1)}$) analogues of the celebrated Andrews-Gordon identities. We further prove $q$-series identities that correspond to the infinite-level limit of the Andrews-Gordon identities for $\mathrm{A}_{r-1}$ (or $\mathrm{A}_{r-1}^{(1)}$) for arbitrary rank $r$. Our results for $\mathrm{A}_2$ also lead to conjectural, manifestly positive, combinatorial formulas for the $2$-variable generating function of cylindric partitions of rank $3$ and level $d$, such that $d$ is not a multiple of $3$.<br />Comment: 46 pages, minor typos corrected, to appear in Transactions of the AMS, Series B

Details

Database :
arXiv
Journal :
Trans. Amer. Math. Soc. Ser. B 10 (2023) 715-765
Publication Type :
Report
Accession number :
edsarx.2111.07550
Document Type :
Working Paper
Full Text :
https://doi.org/10.1090/btran/147