Back to Search Start Over

Defensive Alliances in Graphs

Authors :
Gaikwad, Ajinkya
Maity, Soumen
Publication Year :
2021

Abstract

A set $S$ of vertices of a graph is a defensive alliance if, for each element of $S$, the majority of its neighbours are in $S$. We study the parameterized complexity of the Defensive Alliance problem, where the aim is to find a minimum size defensive alliance. Our main results are the following: (1) The Defensive Alliance problem has been studied extensively during the last twenty years, but the question whether it is FPT when parameterized by feedback vertex set has still remained open. We prove that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, treewidth, pathwidth, and treedepth of the input graph; (2) the problem parameterized by the vertex cover number of the input graph does not admit a polynomial compression unless coNP $\subseteq$ NP/poly, (3) it does not admit $2^{o(n)}$ algorithm under ETH, and (4) the Defensive Alliance problem on circle graphs is NP-complete.<br />Comment: arXiv admin note: text overlap with arXiv:2110.15757

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2111.05545
Document Type :
Working Paper