Back to Search Start Over

Study on NaI(Tl) crystal at -35 C for dark matter detection

Authors :
Lee, S. H.
Kim, G. S.
Kim, H. J.
Kim, K. W.
Lee, J. Y.
Lee, H. S.
Publication Year :
2021

Abstract

We present the responses of a NaI(Tl) crystal in terms of the light yield and pulse shape characteristics of nuclear recoil events at two different temperatures: 22 C (room temperature) and -35 C (low temperature). The light yield is measured using 59.54 keV gamma-rays using a 241Am source relative to the mean charge of single photoelectrons. At the low temperature, we measure a 4.7 +/- 1.3% increase in the light yield compared to that at room temperature. A significantly increased decay time is also observed at the low temperature. The responses to nuclear recoil events are measured using neutrons from a 252Cf source and compared to those to electron recoil events. The measured pulse shape discrimination (PSD) power of the NaI(Tl) crystal at the low temperature is found to be improved in the entire energy range studied because of the increased light yield and the different scintillation characteristics. We also find an approximately 9% increased quenching factor of alpha-induced events, which is the light yield ratio of alpha recoil to electron recoil, at the low temperature. This supports the possibility of an increased quenching factor of the nuclear recoil events that are known to have similar processes of dark matter interaction. The increased light yield and the improved PSD power of nuclear recoil events enhance the sensitivity for dark matter detection via dark matter-nuclei interactions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2111.03328
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.astropartphys.2022.102709