Back to Search Start Over

Notes on massless scalar field partition functions, modular invariance and Eisenstein series

Authors :
Alessio, Francesco
Barnich, Glenn
Bonte, Martin
Publication Year :
2021

Abstract

The partition function of a massless scalar field on a Euclidean spacetime manifold $\mathbb{R}^{d-1}\times\mathbb{T}^2$ and with momentum operator in the compact spatial dimension coupled through a purely imaginary chemical potential is computed. It is modular covariant and admits a simple expression in terms of a real analytic SL$(2,\mathbb{Z})$ Eisenstein series with $s=(d+1)/2$. Different techniques for computing the partition function illustrate complementary aspects of the Eisenstein series: the functional approach gives its series representation, the operator approach yields its Fourier series, while the proper time/heat kernel/world-line approach shows that it is the Mellin transform of a Riemann theta function. High/low temperature duality is generalized to the case of a non-vanishing chemical potential. By clarifying the dependence of the partition function on the geometry of the torus, we discuss how modular covariance is a consequence of full SL$(2,\mathbb{Z})$ invariance. When the spacetime manifold is $\mathbb{R}^p\times\mathbb{T}^{q+1}$, the partition function is given in terms of a SL$(q+1,\mathbb{Z})$ Eisenstein series again with $s=(d+1)/2$. In this case, we obtain the high/low temperature duality through a suitably adapted dual parametrization of the lattice defining the torus. On $\mathbb{T}^{d+1}$, the computation is more subtle. An additional divergence leads to an harmonic anomaly.<br />Comment: 63 pages, to appear on JHEP

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2111.03164
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/JHEP12(2021)211