Back to Search
Start Over
Interpolation and approximation via Momentum ResNets and Neural ODEs
- Publication Year :
- 2021
-
Abstract
- In this article, we explore the effects of memory terms in continuous-layer Deep Residual Networks by studying Neural ODEs (NODEs). We investigate two types of models. On one side, we consider the case of Residual Neural Networks with dependence on multiple layers, more precisely Momentum ResNets. On the other side, we analyze a Neural ODE with auxiliary states playing the role of memory states. We examine the interpolation and universal approximation properties for both architectures through a simultaneous control perspective. We also prove the ability of the second model to represent sophisticated maps, such as parametrizations of time-dependent functions. Numerical simulations complement our study.
- Subjects :
- Mathematics - Optimization and Control
34H05, 37N35, 93B05
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2110.08761
- Document Type :
- Working Paper