Back to Search Start Over

FPGA-based electronic system for the control and readout of superconducting quantum processors

Authors :
Yang, Yuchen
Shen, Zhongtao
Zhu, Xing
Wang, Ziqi
Zhang, Gengyan
Zhou, Jingwei
Jiang, Xun
Deng, Chunqing
Liu, Shubin
Publication Year :
2021

Abstract

Electronic systems for qubit control and measurement serve as a bridge between quantum programming language and quantum information processors. With the rapid development of superconducting quantum circuit (SQC) technology, synchronization in a large-scale system, low-latency execution, and low noise are required for electronic systems. Here, we present a field-programmable gate array (FPGA)-based electronic system with a distributed synchronous clock and trigger architecture. The system supports synchronous control of qubits with jitters of approximately 5 ps. We implement a real-time digital signal processing system in the FPGA, enabling precise timing control, arbitrary waveform generation, IQ demodulation for qubit state discrimination, and the generation of real-time qubit-state-dependent trigger signals for feedback/feedforward control. The hardware and firmware low-latency design reduces the feedback/feedforward latency of the electronic system to 125 ns, significantly less than the decoherence times of the qubit. Finally, we demonstrate the functionalities and low-noise performance of this system using a fluxonium quantum processor.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2110.07965
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/5.0085467