Back to Search
Start Over
Construction of $C^2$ cubic splines on arbitrary triangulations
- Source :
- Foundations of Computational Mathematics 22(5), 1309-1350 (2022)
- Publication Year :
- 2021
-
Abstract
- In this paper, we address the problem of constructing $C^2$ cubic spline functions on a given arbitrary triangulation $\mathcal{T}$. To this end, we endow every triangle of $\mathcal{T}$ with a Wang-Shi macro-structure. The $C^2$ cubic space on such a refined triangulation has a stable dimension and optimal approximation power. Moreover, any spline function in such space can be locally built on each of the macro-triangles independently via Hermite interpolation. We provide a simplex spline basis for the space of $C^2$ cubics defined on a single macro-triangle which behaves like a Bernstein/B-spline basis over the triangle. The basis functions inherit recurrence relations and differentiation formulas from the simplex spline construction, they form a nonnegative partition of unity, they admit simple conditions for $C^2$ joins across the edges of neighboring triangles, and they enjoy a Marsden-like identity. Also, there is a single control net to facilitate control and early visualization of a spline function over the macro-triangle. Thanks to these properties, the complex geometry of the Wang-Shi macro-structure is transparent to the user. Stable global bases for the full space of $C^2$ cubics on the Wang-Shi refined triangulation $\mathcal{T}$ are deduced from the local simplex spline basis by extending the concept of minimal determining sets.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Journal :
- Foundations of Computational Mathematics 22(5), 1309-1350 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2110.07907
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s10208-022-09553-z