Back to Search
Start Over
Solar Flare Irradiance: Observations and Physical Modeling
- Publication Year :
- 2021
-
Abstract
- We examine SDO/EVE data to better understand solar flare irradiance, and how that irradiance may vary for large events. We measure scaling laws relating GOES flare classes to irradiance in 21 lines measured with SDO/EVE, formed across a wide range of temperatures, and find that this scaling depends on the line formation temperature. We extrapolate these irradiance values to large events, exceeding X10. In order to create full spectra, however, we need a physical model of the irradiance. We present the first results of a new physical model of solar flare irradiance, NRLFLARE, that sums together a series of flare loops to calculate the spectral irradiance ranging from the X-rays through the far ultraviolet (~ 0 to 1250 Angstroms), constrained by GOES/XRS observations. We test this model against SDO/EVE data. The model spectra and time evolution compares well in high temperature emission, but cooler lines show large discrepancies. We speculate that the discrepancies are likely due to both a non-uniform cross section of the flaring loops as well as opacity effects. We then show that allowing the cross-sectional area to vary with height significantly improves agreement with observations, and is therefore a crucial parameter needed to accurately model the intensity of spectral lines, particularly in the transition region from 4.7 < log T < 6.0.<br />Comment: Accepted to ApJ
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2110.06310
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3847/1538-4357/ac4784