Back to Search
Start Over
Transfer design between neighborhoods of planetary moons in the circular restricted three-body problem
- Source :
- Celestial Mechanics & Dynamical Astronomy 133, 36 (2021)
- Publication Year :
- 2021
-
Abstract
- Given the interest in future space missions devoted to the exploration of key moons in the solar system and that may involve libration point orbits, an efficient design strategy for transfers between moons is introduced that leverages the dynamics in these multi-body systems. The moon-to-moon analytical transfer (MMAT) method is introduced, comprised of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. In particular, connections between the periodic orbits of such two different moons are achieved. The strategy is applicable for any type of direct transfers that satisfy the analytical constraints. Case studies are presented for the Jovian and Uranian systems. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons.
- Subjects :
- Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Database :
- arXiv
- Journal :
- Celestial Mechanics & Dynamical Astronomy 133, 36 (2021)
- Publication Type :
- Report
- Accession number :
- edsarx.2110.03683
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s10569-021-10031-x