Back to Search
Start Over
Photoneutralization of charges in GaAs quantum dot based entangled photon emitters
- Source :
- Physical Review B 105, 115301 (2022)
- Publication Year :
- 2021
-
Abstract
- Semiconductor-based emitters of pairwise photonic entanglement are a promising constituent of photonic quantum technologies. They are known for the ability to generate discrete photonic states on-demand with low multiphoton emission, near-unity entanglement fidelity, and high single photon indistinguishability. However, quantum dots typically suffer from luminescence blinking, lowering the efficiency of the source and hampering their scalable application in quantum networks. In this paper, we investigate and adjust the intermittence of the neutral exciton emission in a GaAs/AlGaAs quantum dot under two-photon resonant excitation of the neutral biexciton. We investigate the spectral and quantum optical response of the quantum dot emission to an additional wavelength tunable gate laser, revealing blinking caused by the intrinsic Coulomb blockade due to charge capture processes. Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot and thereby significantly increasing the quantum efficiency by 30%.<br />Comment: 7 pages, 4 figures
- Subjects :
- Quantum Physics
Condensed Matter - Materials Science
Physics - Optics
Subjects
Details
- Database :
- arXiv
- Journal :
- Physical Review B 105, 115301 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2110.02346
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevB.105.115301