Back to Search Start Over

Density functions for QuickQuant and QuickVal

Authors :
Fill, James Allen
Hung, Wei-Chun
Publication Year :
2021

Abstract

We prove that, for every $0 \leq t \leq 1$, the limiting distribution of the scale-normalized number of key comparisons used by the celebrated algorithm QuickQuant to find the $t$th quantile in a randomly ordered list has a Lipschitz continuous density function $f_t$ that is bounded above by $10$. Furthermore, this density $f_t(x)$ is positive for every $x > \min\{t, 1 - t\}$ and, uniformly in $t$, enjoys superexponential decay in the right tail. We also prove that the survival function $1 - F_t(x) = \int_x^{\infty}\!f_t(y)\,\mathrm{d}y$ and the density function $f_t(x)$ both have the right tail asymptotics $\exp [-x \ln x - x \ln \ln x + O(x)]$. We use the right-tail asymptotics to bound large deviations for the scale-normalized number of key comparisons used by QuickQuant.<br />Comment: 72 pages; submitted for publication in September, 2021

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2109.14749
Document Type :
Working Paper