Back to Search Start Over

More models of walks avoiding a quadrant (extended abstract)

Authors :
Bousquet-Melou, Mireille
Wallner, Michael
Publication Year :
2021

Abstract

We continue the enumeration of plane lattice paths avoiding the negative quadrant initiated by the first author in [Bousquet-M{\'e}lou, 2016]. We solve in detail a new case, the king walks, where all 8 nearest neighbour steps are allowed. As in the two cases solved in [Bousquet-M{\'e}lou, 2016], the associated generating function is proved to differ from a simple, explicit D-finite series (related to the enumeration of walks confined to the first quadrant) by an algebraic one. The principle of the approach is the same as in [Bousquet-M{\'e}lou, 2016], but challenging theoretical and computational difficulties arise as we now handle algebraic series of larger degree. We also explain why we expect the observed algebraicity phenomenon to persist for 4 more models, for which the quadrant problem is solvable using the reflection principle.<br />Comment: Analysis of Algorithms, 2020, Klagenfurt, Austria

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2109.14307
Document Type :
Working Paper
Full Text :
https://doi.org/10.4230/LIPIcs.AofA.2020.13