Back to Search
Start Over
Back to the Formula -- LHC Edition
- Source :
- SciPost Phys. 16, 037 (2024)
- Publication Year :
- 2021
-
Abstract
- While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We show how symbolic regression trained on matrix-element information provides, for instance, optimal LHC observables in an easily interpretable form. We introduce the method using the effect of a dimension-6 coefficient on associated ZH production. We then validate it for the known case of CP-violation in weak-boson-fusion Higgs production, including detector effects.
- Subjects :
- High Energy Physics - Phenomenology
Subjects
Details
- Database :
- arXiv
- Journal :
- SciPost Phys. 16, 037 (2024)
- Publication Type :
- Report
- Accession number :
- edsarx.2109.10414
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.21468/SciPostPhys.16.1.037