Back to Search Start Over

Back to the Formula -- LHC Edition

Authors :
Butter, Anja
Plehn, Tilman
Soybelman, Nathalie
Brehmer, Johann
Source :
SciPost Phys. 16, 037 (2024)
Publication Year :
2021

Abstract

While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We show how symbolic regression trained on matrix-element information provides, for instance, optimal LHC observables in an easily interpretable form. We introduce the method using the effect of a dimension-6 coefficient on associated ZH production. We then validate it for the known case of CP-violation in weak-boson-fusion Higgs production, including detector effects.

Details

Database :
arXiv
Journal :
SciPost Phys. 16, 037 (2024)
Publication Type :
Report
Accession number :
edsarx.2109.10414
Document Type :
Working Paper
Full Text :
https://doi.org/10.21468/SciPostPhys.16.1.037