Back to Search
Start Over
An Empirical Bayes Robust Meta-Analytical-Predictive Prior to Adaptively Leverage External Data
- Publication Year :
- 2021
-
Abstract
- We propose a novel empirical Bayes robust MAP (EB-rMAP) prior to adaptively leverage external/historical data. Built on Box's prior predictive p-value, the EB-rMAP prior framework balances between model parsimony and flexibility through a tuning parameter. The proposed framework can be applied to binary, normal, and time-to-event endpoints. Computational aspects of the framework are efficient. Simulations results with different endpoints demonstrate that the EB-rMAP prior is robust in the presence of prior-data conflict while preserving statistical power. The proposed EB-rMAP prior is then applied to a clinical dataset that comprises of ten oncology clinical trials, including the perspective study.
- Subjects :
- Statistics - Methodology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2109.10237
- Document Type :
- Working Paper