Back to Search
Start Over
Tailoring solid-state single-photon sources with stimulated emissions
- Publication Year :
- 2021
-
Abstract
- The coherent interaction of electromagnetic fields with solid-state two-level systems can yield deterministic quantum light sources for photonic quantum technologies. To date, the performance of semiconductor single-photon sources based on three-level systems is limited mainly due to a lack of high photon indistinguishability. Here, we tailor the cavity-enhanced spontaneous emission from a ladder-type three-level system in a single epitaxial quantum dot (QD) through stimulated emission. After populating the biexciton (XX) of the QD through two-photon resonant excitation (TPE), we use another laser pulse to selectively depopulate the XX state into an exciton (X) state with a predefined polarization. The stimulated XX-X emission modifies the X decay dynamics and yields improved polarized single-photon source characteristics such as a source brightness of 0.030(2), a single-photon purity of 0.998(1), and an indistinguishability of 0.926(4). Our method can be readily applied to existing QD single-photon sources and expands the capabilities of three-level systems for advanced quantum photonic functionalities.<br />Comment: NN to appear, comments are welcome
- Subjects :
- Physics - Optics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2109.09284
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41565-022-01092-6