Back to Search Start Over

How Powerful is Graph Convolution for Recommendation?

Authors :
Shen, Yifei
Wu, Yongji
Zhang, Yao
Shan, Caihua
Zhang, Jun
Letaief, Khaled B.
Li, Dongsheng
Publication Year :
2021

Abstract

Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF). Nevertheless, the theoretical underpinnings of their empirical successes remain elusive. In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing. By identifying the critical role of smoothness, a key concept in graph signal processing, we develop a unified graph convolution-based framework for CF. We prove that many existing CF methods are special cases of this framework, including the neighborhood-based methods, low-rank matrix factorization, linear auto-encoders, and LightGCN, corresponding to different low-pass filters. Based on our framework, we then present a simple and computationally efficient CF baseline, which we shall refer to as Graph Filter based Collaborative Filtering (GF-CF). Given an implicit feedback matrix, GF-CF can be obtained in a closed form instead of expensive training with back-propagation. Experiments will show that GF-CF achieves competitive or better performance against deep learning-based methods on three well-known datasets, notably with a $70\%$ performance gain over LightGCN on the Amazon-book dataset.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2108.07567
Document Type :
Working Paper