Back to Search
Start Over
Neuron Campaign for Initialization Guided by Information Bottleneck Theory
- Publication Year :
- 2021
-
Abstract
- Initialization plays a critical role in the training of deep neural networks (DNN). Existing initialization strategies mainly focus on stabilizing the training process to mitigate gradient vanish/explosion problems. However, these initialization methods are lacking in consideration about how to enhance generalization ability. The Information Bottleneck (IB) theory is a well-known understanding framework to provide an explanation about the generalization of DNN. Guided by the insights provided by IB theory, we design two criteria for better initializing DNN. And we further design a neuron campaign initialization algorithm to efficiently select a good initialization for a neural network on a given dataset. The experiments on MNIST dataset show that our method can lead to a better generalization performance with faster convergence.<br />Comment: 5 pages, Accepted by CIKM'21
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2108.06530
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1145/3459637.3482153