Back to Search Start Over

The discovery of the largest gas filament in our Galaxy, or a new spiral arm?

Authors :
Li, Chong
Qiu, Keping
Hu, Bo
Cao, Yue
Source :
The Astrophysical Journal Letters, 2021, Volume 918, Number 1
Publication Year :
2021

Abstract

Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we detect a giant HI filamentary structure in the sky region of 307$.\!\!^{\circ}$7 $<$ $\alpha$ $<$ 311$.\!\!^{\circ}$0 and 40$.\!\!^{\circ}$9 $<$ $\delta$ $<$ 43$.\!\!^{\circ}$4. The structure has a velocity range of $-$170 km s$^{-1}$ to $-$130 km s$^{-1}$, and a mean velocity of $-$150 km s$^{-1}$, putting it to a Galactocentric distance of 22 kpc. The HI structure has a length of 1.1 kpc, which appears to be so far the furthest and largest giant filament in the Galaxy and we name it Cattail. Its mass is calculated to be 6.5 $\times$ 10$^4$ M$_{\odot}$ and the linear mass density is 60 M$_{\odot}$ pc$^{-1}$. Its width is 207 pc, corresponding to an aspect ratio of 5:1. Cattail possesses a small velocity gradient (0.02 km s$^{-1}$ pc$^{-1}$) along its major axis. Together with the HI4PI data, we find that Cattail could have an even larger length, up to 5 kpc. We also identify another new elongated structure to be the extension into the Galactic first quadrant of the Outer Scutum-Centaurus (OSC) arm, and Cattail appears to be located far behind the OSC. The question about how such a huge filament is produced at the extreme Galactic location remains open. Alternatively, Cattail might be part of a new arm beyond the OSC, though it is puzzling that the structure does not fully follow the warp of the Galactic disk.<br />Comment: 10 pages, 7 figures, Accepted for publication in ApJL

Details

Database :
arXiv
Journal :
The Astrophysical Journal Letters, 2021, Volume 918, Number 1
Publication Type :
Report
Accession number :
edsarx.2108.01905
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/2041-8213/ac19bc