Back to Search Start Over

Method for detecting highly-eccentric binaries with a gravitational wave burst search

Authors :
Cheeseboro, Belinda D.
Baker, Paul T.
Publication Year :
2021

Abstract

Detection of gravitational waves (GW) from highly eccentric binary black hole (BBH) systems can provide insight into their dynamics and formation. To date, all of the LIGO-Virgo BBH detections have been made using quasi-circular templates in their initial discovery. However, recent studies have found some of these systems to be compatible with high eccentricity in the LIGO band, $e_{10 \textrm{Hz}} > 0.1$, possibly pointing to a population of sources that are challenging to detect. Current low-latency search methods used with ground-based GW detector data are not well equipped to detect highly eccentric sources. Template-based, matched-filter searches require accurate eccentric waveform models that are computational expensive. Unmodeled burst searches are designed to detected localized excess power and are unable to identify multiple isolated bursts, as would originate from a single highly eccentric BBH. Therefore, we propose a signal-based prior that can be incorporated into an existing GW burst search to target highly eccentric BBHs. Our eccentric burst prior is based on the Newtonian burst model described by Loutrel & Yunes (2017). As a proof of concept, we test our method on simulated data and find that for intermediate SNR $\sim3-6$ signals using the eccentric burst prior more effectively localizes GW bursts when compared to a uniform prior.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2108.01050
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevD.104.104016