Back to Search
Start Over
Cardinality-constrained structured data-fitting problems
- Publication Year :
- 2021
-
Abstract
- A memory-efficient framework is described for the cardinality-constrained structured data-fitting problem. Dual-based atom-identification rules are proposed that reveal the structure of the optimal primal solution from near-optimal dual solutions. These rules allow for a simple and computationally cheap algorithm for translating any feasible dual solution to a primal solution that satisfies the cardinality constraint. Rigorous guarantees are provided for obtaining a near-optimal primal solution given any dual-based method that generates dual iterates converging to an optimal dual solution. Numerical experiments on real-world datasets support confirm the analysis and demonstrate the efficiency of the proposed approach.
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2107.11373
- Document Type :
- Working Paper