Back to Search
Start Over
Improved Analysis of Online Balanced Clustering
- Publication Year :
- 2021
-
Abstract
- In the online balanced graph repartitioning problem, one has to maintain a clustering of $n$ nodes into $\ell$ clusters, each having $k = n / \ell$ nodes. During runtime, an online algorithm is given a stream of communication requests between pairs of nodes: an inter-cluster communication costs one unit, while the intra-cluster communication is free. An algorithm can change the clustering, paying unit cost for each moved node. This natural problem admits a simple $O(\ell^2 \cdot k^2)$-competitive algorithm COMP, whose performance is far apart from the best known lower bound of $\Omega(\ell \cdot k)$. One of open questions is whether the dependency on $\ell$ can be made linear; this question is of practical importance as in the typical datacenter application where virtual machines are clustered on physical servers, $\ell$ is of several orders of magnitude larger than $k$. We answer this question affirmatively, proving that a simple modification of COMP is $(\ell \cdot 2^{O(k)})$-competitive. On the technical level, we achieve our bound by translating the problem to a system of linear integer equations and using Graver bases to show the existence of a ``small'' solution.
- Subjects :
- Computer Science - Data Structures and Algorithms
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2107.00145
- Document Type :
- Working Paper