Back to Search Start Over

FRaC: FMCW-Based Joint Radar-Communications System via Index Modulation

Authors :
Ma, Dingyou
Shlezinger, Nir
Huang, Tianyao
Liu, Yimin
Eldar, Yonina C.
Publication Year :
2021

Abstract

Dual function radar communications (DFRC) systems are attractive technologies for autonomous vehicles, which utilize electromagnetic waves to constantly sense the environment while simultaneously communicating with neighbouring devices. An emerging approach to implement DFRC systems is to embed information in radar waveforms via index modulation (IM). Implementation of DFRC schemes in vehicular systems gives rise to strict constraints in terms of cost, power efficiency, and hardware complexity. In this paper, we extend IM-based DFRC systems to utilize sparse arrays and frequency modulated continuous waveforms (FMCWs), which are popular in automotive radar for their simplicity and low hardware complexity. The proposed FMCW-based radar-communications system (FRaC) operates at reduced cost and complexity by transmitting with a reduced number of radio frequency modules, combined with narrowband FMCW signalling. This is achieved via array sparsification in transmission, formulating a virtual multiple-input multiple-output array by combining the signals in one coherent processing interval, in which the narrowband waveforms are transmitted in a randomized manner. Performance analysis and numerical results show that the proposed radar scheme achieves similar resolution performance compared with a wideband radar system operating with a large receive aperture, while requiring less hardware overhead. For the communications subsystem, FRaC achieves higher rates and improved error rates compared to dual-function signalling based on conventional phase modulation.<br />Comment: 16 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2106.14671
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/JSTSP.2021.3118219