Back to Search Start Over

High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing

Authors :
Gao, Xingyu
Jiang, Boyang
Allcca, Andres E. Llacsahuanga
Shen, Kunhong
Sadi, Mohammad A.
Solanki, Abhishek B.
Ju, Peng
Xu, Zhujing
Upadhyaya, Pramey
Chen, Yong P.
Bhave, Sunil A.
Li, Tongcang
Source :
Nano Lett. 21, 7708-7714 (2021)
Publication Year :
2021

Abstract

The recently discovered spin defects in hexagonal boron nitride (hBN), a layered van der Waals material, have great potential in quantum sensing. However, the photoluminescence and the contrast of the optically detected magnetic resonance (ODMR) of hBN spin defects are relatively low so far, which limits their sensitivity. Here we report a record-high ODMR contrast of 46$\%$ at room temperature, and simultaneous enhancement of the photoluminescence of hBN spin defects by up to 17-fold by the surface plasmon of a gold-film microwave waveguide. Our results are obtained with shallow boron vacancy spin defects in hBN nanosheets created by low-energy He$^+$ ion implantation, and a gold-film microwave waveguide fabricated by photolithography. We also explore the effects of microwave and laser powers on the ODMR, and improve the sensitivity of hBN spin defects for magnetic field detection. Our results support the promising potential of hBN spin defects for nanoscale quantum sensing.

Details

Database :
arXiv
Journal :
Nano Lett. 21, 7708-7714 (2021)
Publication Type :
Report
Accession number :
edsarx.2106.13915
Document Type :
Working Paper
Full Text :
https://doi.org/10.1021/acs.nanolett.1c02495