Back to Search
Start Over
Collective Spin-Light and Light-Mediated Spin-Spin Interactions in an Optical Cavity
- Source :
- PRX Quantum 3, 020308, 2022
- Publication Year :
- 2021
-
Abstract
- The interaction between an atomic ensemble and a light mode in a high-finesse optical cavity can easily reach the strong-coupling regime, where quantum effects dominate. In this regime, the interaction can be used to generate both atom-light and atom-atom entanglement. We analyze the dominant effects on the collective atomic state and the light field, and derive a unified approach that can account for atomic entanglement induced both by measurements on the light field, and by ignoring the state of the light field altogether. We present analytical expressions for the entanglement induced by the interaction, and determine the conditions that maximize the entanglement-induced gain over the standard quantum limit in quantum sensors and atomic clocks.<br />Comment: 25 pages, accepted for publication in PRX Quantum
- Subjects :
- Quantum Physics
Condensed Matter - Quantum Gases
Physics - Atomic Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- PRX Quantum 3, 020308, 2022
- Publication Type :
- Report
- Accession number :
- edsarx.2106.13234
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PRXQuantum.3.020308