Back to Search
Start Over
The Existence of full dimensional tori for d-dimensional Nonlinear Schr$\ddot{\mbox{O}}$dinger equation
- Publication Year :
- 2021
-
Abstract
- In this paper, we prove the existence of full dimensional tori for $d$-dimensional nonlinear Schr$\ddot{\mbox{o}}$dinger equation with periodic boundary conditions \begin{equation*}\label{L1} \sqrt{-1}u_{t}+\Delta u+V*u\pm\epsilon |u|^2u=0,\hspace{12pt}x\in\mathbb{T}^d,\quad d\geq 1, \end{equation*} where $V*$ is the convolution potential. Here the radius of the invariant torus satisfies a slower decay, i.e. \begin{equation*}\label{031601} I_{\textbf n}\sim e^{-r\ln^{\sigma}\left\|\textbf n\right\|},\qquad \mbox{as}\ \left\|\textbf n\right\|\rightarrow\infty, \end{equation*}for any $\sigma>2$ and $r\geq 1$. This result confirms a conjecture by Bourgain [J. Funct. Anal. 229 (2005), no. 1, 62-94].<br />Comment: 54 pages. arXiv admin note: substantial text overlap with arXiv:2103.14777
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2106.13160
- Document Type :
- Working Paper