Back to Search
Start Over
Adaptive optics imaging with a pyramid wavefront sensor for visual science
- Publication Year :
- 2021
-
Abstract
- The pyramid wavefront sensor (P-WFS) has replaced the Shack-Hartmann (SH-) WFS as sensor of choice for high performance adaptive optics (AO) systems in astronomy because of its flexibility in pupil sampling, its dynamic range, and its improved sensitivity in closed-loop application. Usually, a P-WFS requires modulation and high precision optics that lead to high complexity and costs of the sensor. These factors limit the competitiveness of the P-WFS with respect to other WFS devices for AO correction in visual science. Here, we present a cost effective realization of AO correction with a non-modulated PWFS and apply this technique to human retinal in vivo imaging using optical coherence tomography (OCT). P-WFS based high quality AO imaging was, to the best of our knowledge for the first time, successfully performed in 5 healthy subjects and benchmarked against the performance of conventional SH-WFS based AO. Smallest retinal cells such as central foveal cone photoreceptors are visualized and we observed a better quality of the images recorded with the P-WFS. The robustness and versatility of the sensor is demonstrated in the model eye under various conditions and in vivo by high-resolution imaging of other structures in the retina using standard and extended fields of view.
- Subjects :
- Physics - Medical Physics
Physics - Optics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2106.11052
- Document Type :
- Working Paper