Back to Search
Start Over
Systematic KMTNet Planetary Anomaly Search, Paper II: Six New $q<2\times 10^{-4}$ Mass-ratio Planets
- Publication Year :
- 2021
-
Abstract
- We apply the automated AnomalyFinder algorithm of Paper I (Zang et al. 2021b) to 2018-2019 light curves from the $\simeq 13\,{\rm deg}^2$ covered by the six KMTNet prime fields, with cadences $\Gamma \geq 2\,{\rm hr}^{-1}$. We find a total of 11 planets with mass ratios $q<2\times 10^{-4}$, including six newly discovered planets, one planet that was reported in Paper I, and recovery of four previously discovered planets. One of the new planets, OGLE-2018-BLG-0977Lb, is in a planetary-caustic event, while the other five (OGLE-2018-BLG-0506Lb, OGLE-2018-BLG-0516Lb, OGLE-2019-BLG-1492Lb, KMT-2019-BLG-0253, and KMT-2019-BLG-0953) are revealed by a "dip" in the light curve as the source crosses the host-planet axis on the opposite side of the planet. These subtle signals were missed in previous by-eye searches. The planet-host separations (scaled to the Einstein radius), $s$, and planet-host mass ratios, $q$, are, respectively, $(s,q\times 10^5) = (0.88, 4.1)$, $(0.96\pm 0.10, 8.3)$, $(0.94\pm 0.07, 13)$, $(0.97\pm 0.07, 18)$, $(0.97\pm0.04,4.1)$, and $(0.74,18)$, where the "$\pm$" indicates a discrete degeneracy. The 11 planets are spread out over the range $-5<\log q < -3.7$. Together with the two planets previously reported with $q\sim 10^{-5}$ from the 2018-2019 non-prime KMT fields, this result suggests that planets toward the bottom of this mass-ratio range may be more common than previously believed.<br />Comment: 58 pages, 9 figures, 12 tables, submitted to AJ
- Subjects :
- Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2106.06686
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3847/1538-3881/ac38ad