Back to Search Start Over

Breaking the Limits of Message Passing Graph Neural Networks

Authors :
Balcilar, Muhammet
Héroux, Pierre
Gaüzère, Benoit
Vasseur, Pascal
Adam, Sébastien
Honeine, Paul
Source :
The Thirty-eighth International Conference on Machine Learning, ICML2021
Publication Year :
2021

Abstract

Since the Message Passing (Graph) Neural Networks (MPNNs) have a linear complexity with respect to the number of nodes when applied to sparse graphs, they have been widely implemented and still raise a lot of interest even though their theoretical expressive power is limited to the first order Weisfeiler-Lehman test (1-WL). In this paper, we show that if the graph convolution supports are designed in spectral-domain by a non-linear custom function of eigenvalues and masked with an arbitrary large receptive field, the MPNN is theoretically more powerful than the 1-WL test and experimentally as powerful as a 3-WL existing models, while remaining spatially localized. Moreover, by designing custom filter functions, outputs can have various frequency components that allow the convolution process to learn different relationships between a given input graph signal and its associated properties. So far, the best 3-WL equivalent graph neural networks have a computational complexity in $\mathcal{O}(n^3)$ with memory usage in $\mathcal{O}(n^2)$, consider non-local update mechanism and do not provide the spectral richness of output profile. The proposed method overcomes all these aforementioned problems and reaches state-of-the-art results in many downstream tasks.<br />Comment: 18 pages, 6 figures

Details

Database :
arXiv
Journal :
The Thirty-eighth International Conference on Machine Learning, ICML2021
Publication Type :
Report
Accession number :
edsarx.2106.04319
Document Type :
Working Paper