Back to Search Start Over

Nonlinear Inequalities with Double Riesz Potentials

Authors :
Ghergu, Marius
Liu, Zeng
Miyamoto, Yasuhito
Moroz, Vitaly
Source :
Potential Anal (2021)
Publication Year :
2021

Abstract

We investigate the nonnegative solutions to the nonlinear integral inequality $u \ge I_{\alpha}\ast\big((I_\beta \ast u^p)u^q\big)$ a.e. in $\mathbb{R}^N$, where $\alpha, \beta\in (0,N)$, $p, q>0$ and $I_\alpha$, $I_\beta$ denote the Riesz potentials of order $\alpha$ and $\beta$ respectively. Our approach relies on a nonlocal positivity principle which allows us to derive optimal ranges for the parameters $\alpha$, $\beta$, $p$ and $q$ to describe the existence and the nonexistence of a solution. The optimal decay at infinity for such solutions is also discussed.<br />Comment: 15 pages

Details

Database :
arXiv
Journal :
Potential Anal (2021)
Publication Type :
Report
Accession number :
edsarx.2106.03581
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s11118-021-09962-9