Back to Search Start Over

Towards One Model to Rule All: Multilingual Strategy for Dialectal Code-Switching Arabic ASR

Authors :
Chowdhury, Shammur Absar
Hussein, Amir
Abdelali, Ahmed
Ali, Ahmed
Publication Year :
2021

Abstract

With the advent of globalization, there is an increasing demand for multilingual automatic speech recognition (ASR), handling language and dialectal variation of spoken content. Recent studies show its efficacy over monolingual systems. In this study, we design a large multilingual end-to-end ASR using self-attention based conformer architecture. We trained the system using Arabic (Ar), English (En) and French (Fr) languages. We evaluate the system performance handling: (i) monolingual (Ar, En and Fr); (ii) multi-dialectal (Modern Standard Arabic, along with dialectal variation such as Egyptian and Moroccan); (iii) code-switching -- cross-lingual (Ar-En/Fr) and dialectal (MSA-Egyptian dialect) test cases, and compare with current state-of-the-art systems. Furthermore, we investigate the influence of different embedding/character representations including character vs word-piece; shared vs distinct input symbol per language. Our findings demonstrate the strength of such a model by outperforming state-of-the-art monolingual dialectal Arabic and code-switching Arabic ASR.<br />Comment: Accepted in INTERSPEECH 2021, Multilingual ASR, Multi-dialectal ASR, Code-Switching ASR, Arabic ASR, Conformer, Transformer, E2E ASR, Speech Recognition, ASR, Arabic, English, French

Details

Language :
English
Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2105.14779
Document Type :
Working Paper