Back to Search Start Over

Revizor: Testing Black-box CPUs against Speculation Contracts

Authors :
Oleksenko, Oleksii
Fetzer, Christof
Köpf, Boris
Silberstein, Mark
Publication Year :
2021

Abstract

Speculative vulnerabilities such as Spectre and Meltdown expose speculative execution state that can be exploited to leak information across security domains via side-channels. Such vulnerabilities often stay undetected for a long time as we lack the tools for systematic testing of CPUs to find them. In this paper, we propose an approach to automatically detect microarchitectural information leakage in commercial black-box CPUs. We build on speculation contracts, which we employ to specify the permitted side effects of program execution on the CPU's microarchitectural state. We propose a Model-based Relational Testing (MRT) technique to empirically assess the CPU compliance with these specifications. We implement MRT in a testing framework called Revizor, and showcase its effectiveness on real Intel x86 CPUs. Revizor automatically detects violations of a rich set of contracts, or indicates their absence. A highlight of our findings is that Revizor managed to automatically surface Spectre, MDS, and LVI, as well as several previously unknown variants.<br />Comment: Published in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'22)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2105.06872
Document Type :
Working Paper