Back to Search
Start Over
Self-bias voltage formation and charged particle dynamics in multi-frequency capacitively coupled plasmas
- Publication Year :
- 2021
-
Abstract
- In this work, we analyze the creation of the discharge asymmetry and the concomitant formation of the DC self-bias voltage in capacitively coupled radio frequency plasmas driven by multi-frequency waveforms, as a function of the electrode surface characteristics. For this latter, we consider and vary the coefficients that characterize the elastic reflection of the electrons from the surfaces and the ion-induced secondary electron yield. Our investigations are based on Particle-in-Cell/Monte Carlo Collision simulations of the plasma and on a model that aids the understanding of the computational results. Electron reflection from the electrodes is found to affect slightly the discharge asymmetry in the presence of multi-frequency excitation, whereas secondary electrons cause distinct changes to the asymmetry of the plasma as a function of the phase angle between the harmonics of the driving voltage waveform and as a function the number of these harmonics.
- Subjects :
- Physics - Plasma Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2105.01890
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/5.0055444