Back to Search
Start Over
The crossing number of the generalized Petersen graph $P(3k,k)$ in the projective plane
- Publication Year :
- 2021
-
Abstract
- The crossing number of a graph $G$ in a surface $\Sigma$, denoted by $cr_{\Sigma}(G)$, is the minimum number of pairwise intersections of edges in a drawing of $G$ in $\Sigma$. Let $k$ be an integer satisfying $k\geq 3$, the generalized Petersen graph $P(3k,k)$ is the graph with vertex set $V(P(3k,k))=\{u_i, v_i| i=1,2,\cdots,3k\}$ and edge set $E(P(3k,k))=\{u_iu_{i+1}, u_iv_i, v_iv_{k+i}| i=1,2,\cdots,3k\},$ the subscripts are read modulo $3k.$ This paper investigates the crossing number of $P(3k,k)$ in the projective plane. We determine the exact value of $cr_{N_1}(P(3k,k))$ is $k-2$ when $3\le k\le 7,$ moreover, for $k\ge 8,$ we get that $k-2\le cr_{N_1}(P(3k,k))\le k-1.$
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2104.11640
- Document Type :
- Working Paper