Back to Search Start Over

Normalized solutions to Schr\'{o}dinger systems with linear and nonlinear couplings

Authors :
Yun, Zhaoyang
Zhang, Zhitao
Publication Year :
2021

Abstract

In this paper, we study important Schr\"{o}dinger systems with linear and nonlinear couplings \begin{equation}\label{eq:diricichlet} \begin{cases} -\Delta u_1-\lambda_1 u_1=\mu_1 |u_1|^{p_1-2}u_1+r_1\beta |u_1|^{r_1-2}u_1|u_2|^{r_2}+\kappa (x)u_2~\hbox{in}~\mathbb{R}^N,\\ -\Delta u_2-\lambda_2 u_2=\mu_2 |u_2|^{p_2-2}u_2+r_2\beta |u_1|^{r_1}|u_2|^{r_2-2}u_2+\kappa (x)u_1~ \hbox{in}~\mathbb{R}^N,\\ u_1\in H^1(\mathbb{R}^N), u_2\in H^1(\mathbb{R}^N),\nonumber \end{cases} \end{equation} with the condition $$\int_{\mathbb{R}^N} u_1^2=a_1^2, \int_{\mathbb{R}^N} u_2^2=a_2^2,$$ where $N\geq 2$, $\mu_1,\mu_2,a_1,a_2>0$, $\beta\in\mathbb{R}$, $2<p_1,p_2<2^*$, $2<r_1+r_2<2^*$, $\kappa(x)\in L^{\infty}(\mathbb{R}^N)$ with fixed sign and $\lambda_1,\lambda_2$ are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for $L^2-$subcritical case when $N\geq 2$, and use minimax method to prove this system has a normalized radially symmetric positive solution for $L^2-$supercritical case when $N=3$, $p_1=p_2=4,\ r_1=r_2=2$.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2104.04158
Document Type :
Working Paper