Back to Search
Start Over
Roaming pathways and survival probability in real-time collisional dynamics of cold and controlled bialkali molecules
- Publication Year :
- 2021
-
Abstract
- Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali $^{23}$Na$^{87}$Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or Na$_2$ and Rb$_2$ molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the Na$_2$Rb$_2$ complex is quickly destroyed and thus that the $^{23}$Na$^{87}$Rb molecules are rapidly lost.<br />Comment: 12 pages, 5 figures
- Subjects :
- Physics - Chemical Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2104.01625
- Document Type :
- Working Paper