Back to Search Start Over

Sharp quantitative estimates of Struwe's Decomposition

Authors :
Deng, Bin
Sun, Liming
Wei, Juncheng
Publication Year :
2021

Abstract

Suppose $u\in \dot{H}^1(\mathbb{R}^n)$. In a seminal work, Struwe proved that if $u\geq 0$ and $\|\Delta u+u^{\frac{n+2}{n-2}}\|_{H^{-1}}:=\Gamma(u)\to 0$ then $dist(u,\mathcal{T})\to 0$, where $dist(u,\mathcal{T})$ denotes the $\dot{H}^1(\mathbb{R}^n)$-distance of $u$ from the manifold of sums of Talenti bubbles. Ciraolo, Figalli and Maggi obtained the first quantitative version of Struwe's decomposition with one bubble in all dimensions, namely $\delta (u) \leq C \Gamma (u)$. For Struwe's decomposition with two or more bubbles, Figalli and Glaudo showed a striking dimensional dependent quantitative estimate, namely $\delta(u)\leq C \Gamma(u)$ when $3\leq n\leq 5$ while this is false for $ n\geq 6$. In this paper, we show that \[dist (u,\mathcal{T})\leq C\begin{cases} \Gamma(u)\left|\log \Gamma(u)\right|^{\frac{1}{2}}\quad&\text{if }n=6, |\Gamma(u)|^{\frac{n+2}{2(n-2)}}\quad&\text{if }n\geq 7.\end{cases}\] Furthermore, we show that this inequality is sharp.<br />Comment: 49 pages; comments are welcome

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2103.15360
Document Type :
Working Paper