Back to Search Start Over

Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking

Authors :
Zhao, Luxi
Pop, Paul
Steinhorst, Sebastian
Source :
IEEE Transactions on Network and Service Management, 2022
Publication Year :
2021

Abstract

Owning to the sub-standards being developed by IEEE Time-Sensitive Networking (TSN) Task Group, the traditional IEEE 802.1 Ethernet is enhanced to support real-time dependable communications for future time- and safety-critical applications. Several sub-standards have been recently proposed that introduce various traffic shapers (e.g., Time-Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), Credit-Based Shaper (CBS), Strict Priority (SP)) for flow control mechanisms of queuing and scheduling, targeting different application requirements. These shapers can be used in isolation or in combination and there is limited work that analyzes, evaluates and compares their performance, which makes it challenging for end-users to choose the right combination for their applications. This paper aims at (i) quantitatively comparing various traffic shapers and their combinations, (ii) summarizing, classifying and extending the architectures of individual and combined traffic shapers and their Network calculus (NC)-based performance analysis methods and (iii) filling the gap in the timing analysis research on handling two novel hybrid architectures of combined traffic shapers, i.e., TAS+ATS+SP and TAS+ATS+CBS. A large number of experiments, using both synthetic and realistic test cases, are carried out for quantitative performance comparisons of various individual and combined traffic shapers, from the perspective of upper bounds of delay, backlog and jitter. To the best of our knowledge, we are the first to quantitatively compare the performance of the main traffic shapers in TSN. The paper aims at supporting the researchers and practitioners in the selection of suitable TSN sub-protocols for their use cases.

Details

Database :
arXiv
Journal :
IEEE Transactions on Network and Service Management, 2022
Publication Type :
Report
Accession number :
edsarx.2103.13424
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TNSM.2022.3180160