Back to Search Start Over

Colorful Hamilton cycles in random graphs

Authors :
Chakraborti, Debsoumya
Frieze, Alan
Hasabnis, Mihir
Publication Year :
2021

Abstract

Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C=\{c_1,c_2,\ldots,c_r\}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,\ldots,m_r)\in [0,n]^r$ such that there exists a Hamilton cycle that is the concatenation of $r$ paths $P_1,P_2,\ldots,P_r$, where $P_i$ contains $m_i$ edges of color $c_i$. We study $hcp(G_{n,p})$ when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when $hcp(G_{n,p})=\{(m_1,m_2,\ldots,m_r)\in [0,n]^r: m_1+m_2+\cdots+m_r=n\}$.<br />Comment: fixed minor typos

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2103.03916
Document Type :
Working Paper
Full Text :
https://doi.org/10.1137/21M1403291