Back to Search
Start Over
Colorful Hamilton cycles in random graphs
- Publication Year :
- 2021
-
Abstract
- Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C=\{c_1,c_2,\ldots,c_r\}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,\ldots,m_r)\in [0,n]^r$ such that there exists a Hamilton cycle that is the concatenation of $r$ paths $P_1,P_2,\ldots,P_r$, where $P_i$ contains $m_i$ edges of color $c_i$. We study $hcp(G_{n,p})$ when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when $hcp(G_{n,p})=\{(m_1,m_2,\ldots,m_r)\in [0,n]^r: m_1+m_2+\cdots+m_r=n\}$.<br />Comment: fixed minor typos
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2103.03916
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1137/21M1403291