Back to Search Start Over

Symmetric Multiqudit States: Stars, Entanglement, Rotosensors

Authors :
Chryssomalakos, Chryssomalis
Hanotel, Louis
Guzmán-González, Edgar
Braun, Daniel
Serrano-Ensástiga, Eduardo
Życzkowski, Karol
Source :
Phys. Rev. A 104, 012407 (2021)
Publication Year :
2021

Abstract

A constellation of $N=d-1$ Majorana stars represents an arbitrary pure quantum state of dimension $d$ or a permutation-symmetric state of a system consisting of $n$ qubits. We generalize the latter construction to represent in a similar way an arbitrary symmetric pure state of $k$ subsystems with $d$ levels each. For $d\geq 3$, such states are equivalent, as far as rotations are concerned, to a collection of various spin states, with definite relative complex weights. Following Majorana's lead, we introduce a multiconstellation, consisting of the Majorana constellations of the above spin states, augmented by an auxiliary, "spectator" constellation, encoding the complex weights. Examples of stellar representations of symmetric states of four qutrits, and two spin-$3/2$ systems, are presented. We revisit the Hermite and Murnaghan isomorphisms, which relate multipartite states of various spins, number of parties, and even symmetries. We show how the tools introduced can be used to analyze multipartite entanglement and to identify optimal quantum rotosensors, i.e., pure states which are maximally sensitive to rotations around a specified axis, or averaged over all axes.

Details

Database :
arXiv
Journal :
Phys. Rev. A 104, 012407 (2021)
Publication Type :
Report
Accession number :
edsarx.2103.02786
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.104.012407