Back to Search Start Over

Bayesian analysis of multimessenger M-R data with interpolated hybrid EoS

Authors :
Ayriyan, A.
Blaschke, D.
Grunfeld, A. G.
Alvarez-Castillo, D.
Grigorian, H.
Abgaryan, V.
Source :
The European Physical Journal A, Volume 57, Article number 318 (2021)
Publication Year :
2021

Abstract

We introduce a family of equations of state (EoS) for hybrid neutron star (NS) matter that is obtained by a two-zone parabolic interpolation between a soft hadronic EoS at low densities and a set of stiff quark matter EoS at high densities within a finite region of chemical potentials $\mu_H < \mu < \mu_Q$. Fixing the hadronic EoS as the APR one and choosing the color-superconducting, nonlocal NJL model with two free parameters for the quark phase, we perform Bayesian analyses with this two-parameter family of hybrid EoS. Using three different sets of observational constraints that include the mass of PSR J0740+6620, the tidal deformability for GW170817, and the mass-radius relation for PSR J0030+0451 from NICER as obligatory (set 1), while set 2 uses the possible upper limit on the maximum mass from GW170817 as an additional constraint and set 3 instead of the possibility that the lighter object in the asymmetric binary merger GW190814 is a neutron star. We confirm that in any case, the quark matter phase has to be color superconducting with the dimensionless diquark coupling approximately fulfilling the Fierz relation $\eta_D=0.75$ and the most probable solutions exhibiting a proportionality between $\eta_D$ and $\eta_V$, the coupling of the repulsive vector interaction that is required for a sufficiently large maximum mass. We used the Bayesian analysis to investigate with the method of fictitious measurements the consequences of anticipating different radii for the massive $2~M_\odot$ PSR J0740+6220 for the most likely equation of state. With the actual outcome of the NICER radius measurement on PSR J0740+6220 we could conclude that for the most likely hybrid star EoS would not support a maximum mass as large as $2.5~M_\odot$ so that the event GW190814 was a binary black hole merger.<br />Comment: 20 figures, 1 table, 18 pages

Details

Database :
arXiv
Journal :
The European Physical Journal A, Volume 57, Article number 318 (2021)
Publication Type :
Report
Accession number :
edsarx.2102.13485
Document Type :
Working Paper
Full Text :
https://doi.org/10.1140/epja/s10050-021-00619-0