Back to Search
Start Over
A silicon singlet-triplet qubit driven by spin-valley coupling
- Source :
- Nature Communications 13, 641 (2022)
- Publication Year :
- 2021
-
Abstract
- Spin-orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a novel singlet-triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a $1/f^{\alpha}$ dependence consistent with $\alpha \sim 0.7$, over 9 orders of magnitude in noise frequency.<br />Comment: Supplementary information included with the paper
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Nature Communications 13, 641 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2102.12068
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41467-022-28302-y